Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The probability that a randomly selected 2 -digit number belongs to the set n ∈ N:(2n-2).. is a multiple of 3 is equal to
Q. The probability that a randomly selected
2
-digit number belongs to the set
{
n
∈
N
:
(
2
n
−
2
)
. is a multiple of 3
}
is equal to
911
163
JEE Main
JEE Main 2021
Probability - Part 2
Report Error
A
6
1
B
3
2
C
2
1
D
3
1
Solution:
Total number of cases
=
90
C
1
=
90
Now,
2
n
−
2
=
(
3
−
1
)
n
−
2
n
C
0
3
n
−
n
C
1
⋅
3
n
−
1
+
…
.
+
(
−
1
)
n
−
1
⋅
n
C
n
−
1
3
+
(
−
1
)
n
⋅
n
C
n
−
2
3
(
3
n
−
1
−
n
3
n
−
2
+
……
+
(
−
1
)
n
−
1
⋅
n
)
+
(
−
1
)
n
−
2
(
2
n
−
2
)
is multiply of
3
only when
n
is odd
Req. Probability
=
90
45
=
2
1