Let OA=60i^+3j^, OB=40i^−8j^
and OC=ai^−52j^ AB=OB−OA=20i^−11j^ AC=OC−OA=(a−60)i^−55j^
Now, AB∝AC as A, B, C are collinear.
i.e. (−20i^−11j^)=λ{(a−60)i^−55j^}
On comparing, we get −20=(a−60)λ and −11=−55λ ⇒λ=1/5 ∴−20=(a−60)(1/5) ⇒a−60=−100 ⇒a=−100+60 ⇒a=−40