Perpendicular bisector of A(1,3) and B(−3,5) is 2x(x1−x2)+2y(y1−y2)=(x12+y12)−(x22+y22) ⇒2x(1+3)+2y(3−5)=(1+9)−(9+25) ⇒8x−4y=10−34 ⇒2x−y+6=0…(i)
Similarly, perpendicular bisector of A(1,3) and C(5,−1) is 2x(1−5)+2y(3+1)=(1+9)−(25+1) ⇒−8x+8y=10−26 ⇒−x+y=−2 ⇒x−y−2=0…(ii)
Point of intersection of Eqs. (i) and (ii), is P=(−8,−10).
Then, the distance between P and A is PA=(1+8)2+(3+10)2 =81+169 =250=510