Q.
The points D,E,F divide BC,CA,AB of triangle ABC in the ratio 1:4,3:2 and 3:7 respectively and the point K divides AB in the ratio 1:3. Let R1 be the resultant of the vectors AD,BE,CF and let the vector CK be denoted by R2. Then
Let a,b,c be the position vectors of vertices A,B,C of the ΔABC. Then, the position vectors of D,E,F are respectively D(54b+c),E(53a+2c),F(107a+3b) ∴AD=54b+c−a BE=53a+2c−b,CF=107a+3b−c
Now AD+BE+CF=101(8b+2c) −10a+6a+4c−10b+7a+3b−10c =101(3a+b−4c) ∴R1=101(3a+b−4c) ⇒10R1=3a+b−4c
The position vector of the point K is 4b+3a ∴CK=4b+3a−c=41(b+3a−4c) ∴R2=41(b+3a−4c) ∴4R2=b+3a−4c ∴10R1=4R2 ⇒5R1=2R2