Given, ABCD is a rectangle
Slope of AB=3−2−2−1=−3=m1….(i)
Slope of BC=a−3b+2=m2….(ii)
Now AB⊥BC⇒m1m2=−1…. (iii) ∴ Putting value of m1 and m2 in Eq. (iii) −3(a−3b+2)=−1 −3b−6=−a+3 ⇒a−3b−9=0… (iv)
Now, slope of line CD= slope of CP m3=a−3b−4 ∴ line AB∥CD⇒m1=m3 ∴−3=a−3b−4 −3a+9=b−4 ⇒3a+b−13=0…(v)
Now, solving Eqs. (iv) and (v), a−3b−9=0⇒3a+b−13=0
Eq. (iv) ×(3) and subtracting Eq. (iv) and Eq. (v),
These value is putting in Eq. (iv) a−3(−57)−9=0 ⇒a+521−9=0a+(524)=0 ⇒a=524
Now, 5a+10b=5×524+10×(−57) =24−14=10