Given equation of curve : y2=2x3...(i)
and line : 4x−3y+2=0 y2=2x3⇒2ydxdy=6x2
Slope of tangent dxdy=2y6x2=y3x2=m1(say)
and 4x−3y+2=0⇒−3y=−4x−2 3y=4x+2⇒y=34x+32
Slope of line =34=m2(say)
Now, m1×m2=−1 ∴y3x2×34=−1 y=−4x2
Squaring on both sides, we get y2=16x4...(ii) equ.(i)−equ(ii): 2x3=16x4 ⇒x=81 or 0
If x=0 then y=0
If x=81 then y=−4×81×81=−161
Therefore, the points are (0,0) and (81,−161).