Let 1x+1=3y+3=2−z+2=k
Thus any point on this line will have coordinates,
x = k - 1, y = 3k - 3, z = - 2k + 2
This line intersects the plane
3x + 4y + 5z = 10. Hence value of x, y, z must satisfy equation of plane. ⇒ 3(k - 1) + 4(3k - 3) + 5 (-2k + 2) = 10 ⇒ 3k - 3 + 12k - 12 + 10 - 10k = 10 ⇒ 5k - 5 = 10 ⇒ k = 3 ∴ The point of intersection is (x, y, z) ⇒ x = 3 - 1, y = 3 × 3 - 3, z = - 2 × 3 + 2 ⇒ (x, y, z) = (2, 6 - 4)