Q.
The plane 2x−y+z=4 intersects the line segment joining the points A(a,−2,4) and B(2,b,−3) at the point C in the ratio 2:1 and the distance of the point C from the origin is 5. If ab<0 and P is the point (a−b,b,2b−a) then CP2 is equal to :
A(a,−2,4),B(2,b,−3) AC:CB=2:1 ⇒C≡(3a+4,32b−2,3−2) C lies on 2x−y+2=4 ⇒32a+8−32b−2−32=4 ⇒a−b=2… (1)
Also OC=5 ⇒(3a+4)2+(32b−2)2+94=5....(2)
Solving, (1) and (2) (b+6)2+(2b−2)2=41 ⇒5b2+4b−1=0 ⇒b=−1 or 51 ⇒a=1 or 511
But ab<0⇒(a,b)=(1,−1) C≡(35,3−4,3−2),P≡(2,−1,−3) CP2=91+91+949=951=317