Given, differential equation is y(1+logx)dydx−xlogx=0 ⇒xlogx(1+logx)dx=ydy ⇒(xlogx1+x1)dx=y1dy
On integrating both sides, we get ∫(xlogx1+x1)dx=∫y1dy
Put logx=t ⇒x1dx=dt ∴∫t1dt+∫x1dx=∫y1dy ⇒logt+logx=logy+logc ⇒logtx=logyc ⇒tx=yc ⇒xlogx=yc
When x=e and y=e2 ∴eloge=e2c ⇒e×1=e2c ⇒c⇒e1 ∴xlogx=ey ⇒y=exlogx