Q.
The number of values of θ∈(−π,π), satisfying sin5θcos3θ=sin6θcos2θ, is
1483
190
J & K CETJ & K CET 2015Trigonometric Functions
Report Error
Solution:
Given, sin5θcos3θ=sin6θcos2θ ⇒2sin5θcos3θ=2sin6θcos2θ ⇒sin8θ+sin2θ=sin8θ+sin4θ[∵2sinAcosB=sin(A+B)+sin(A−B)] ⇒sin4θ−sin2θ=0 ⇒2cos26θsin22θ=0[∵sinC−sinD=2cos2C+D.sin2C−D] ⇒2cos3θsinθ=0 ⇒cos3θ=0 or sinθ=0 ⇒cos3θ=cos2π or sinθ=sin0 ⇒3θ=2nπ±2π or θ=nπ ⇒θ=n(32π)±6π or θ=nπ Since, θ∈(−π,π) So, values of θ in (−π,π) are −6π,0,6π,65π,2π