Given, sin(x+x2)−sin(x2)=sinx ⇒sin(x+x2)=sin(x2)+sinx ⇒2sin(2x+x2)cos(2x+x2) =2sin(2x2+x)cos(2x2−x) sin(2x+x2)=0
or cos(2x2+x)−cos(2x2−x)=0 2x2+x=xπ or 2sin2x2sin2x=0 ⇒2x2+x=0,π,2π, or 2x2=0,π,2n =0,π,2π ⇒x2+x=2π or x2=2π ⇒x2+x−2π=0 or x=2π ⇒x=2−1±1+8π or 2<2π<3 ⇒1+8π=25.14 ∴x=25.2−1 =24.2=2.1 ∵ Total numbers of solution lies between (2,3)=2