Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of solutions of the matrix equation X2 =[1&1 2&3] is
Q. The number of solutions of the matrix equation
X
2
=
[
1
2
1
3
]
is
2534
211
Matrices
Report Error
A
more than
2
100%
B
2
0%
C
0
0%
D
1
0%
Solution:
Let
X
=
(
a
c
b
d
)
⇒
X
2
=
(
a
2
+
b
c
a
c
+
c
d
ab
+
b
d
b
c
+
d
2
)
⇒
a
2
+
b
c
=
1
and
ab
+
b
d
=
1
⇒
b
(
a
+
b
)
=
1
a
c
+
c
d
=
2
⇒
c
(
a
+
d
)
=
2
⇒
2
b
=
c
Also,
b
c
+
d
2
=
3
⇒
d
2
−
a
2
=
2
⇒
(
d
−
a
)
(
a
+
d
)
=
2
⇒
d
−
a
=
2
b
(using
b
c
=
1
−
a
2
)
a
+
d
=
1/
b
⇒
2
d
=
2
b
+
1/
b
,
2
a
=
1/
b
−
2
b
d
=
b
+
1/2
b
,
a
=
1/
(
2
b
)
−
b
c
=
2
b
⇒
(
b
2
+
4
b
2
1
+
1
)
+
2
b
2
=
3
⇒
3
b
2
+
4
b
2
1
=
2
⇒
3
x
+
4
x
1
=
2
or
b
=
±
6
1
or
b
=
±
2
1
Therefore, matrices are
(
0
2
1/
2
2
)
,
(
0
−
2
−
1/
2
−
2
)
,
(
2/
6
2/
6
−
1/
6
4/
6
)