Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The Number of solutions of the equation sin 3 x cos x+ sin 2 x cos 2 x+ sin x cos 3 x=1 in the interval [0,2 π] is
Q. The Number of solutions of the equation
sin
3
x
cos
x
+
sin
2
x
cos
2
x
+
sin
x
cos
3
x
=
1
in the interval
[
0
,
2
π
]
is
40
158
Trigonometric Functions
Report Error
A
0
B
2
C
3
D
infinite
Solution:
sin
3
x
cos
x
+
sin
2
x
cos
2
x
+
sin
x
cos
3
x
=
1
⇒
sin
x
cos
x
(
sin
2
x
+
sin
x
cos
x
+
cos
2
x
)
=
1
⇒
2
s
i
n
2
x
(
1
+
2
s
i
n
2
x
)
=
1
⇒
sin
2
x
(
2
+
sin
2
x
)
=
4
⇒
sin
2
2
x
+
2
sin
2
x
−
4
=
0
⇒
sin
2
x
=
2
−
2
±
4
+
16
⇒
sin
2
x
=
−
1
±
5
This is not possible. (since
−
1
≤
sin
2
x
≤
1
)
Hence the given equation has no solution.