Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of solutions of the equation log√2 sin x(.1+cosx.)=2 in the interval [0 , 5 π ] is
Q. The number of solutions of the equation
l
o
g
2
s
in
x
(
1
+
cos
x
)
=
2
in the interval
[
0
,
5
π
]
is
1599
211
NTA Abhyas
NTA Abhyas 2020
Report Error
Answer:
3
Solution:
lo
g
2
sin
x
(
1
+
cos
x
)
=
2
1
+
cos
x
=
(
2
sin
x
)
2
=
2
sin
2
x
1
+
cos
x
=
2
−
2
cos
2
x
2
cos
2
x
+
cos
x
−
1
=
0
⇒
(
cos
x
+
1
)
(
2
cos
x
−
1
)
=
0
⇒
cos
x
=
2
1
or
cos
x
=
−
1
(rejected)
⇒
x
=
3
π
,
3
5
π
in
[
0
,
2
π
]
But at
x
=
3
5
π
,
2
sin
x
is negative
⇒
x
=
3
π
in
[
0
,
2
π
]
⇒
x
=
3
π
,
3
π
+
2
π
,
3
π
+
4
π
⇒
3
solutions in
[
0
,
5
π
]