Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of solutions of the equation |cot x|=cot x+(1/sin x), (0 le x le 2π) is
Q. The number of solutions of the equation
∣
co
t
x
∣
=
co
t
x
+
s
in
x
1
,
(
0
≤
x
≤
2
π
)
is
3382
237
COMEDK
COMEDK 2015
Trigonometric Functions
Report Error
A
0
17%
B
1
39%
C
2
34%
D
3
10%
Solution:
(i) When
x
∈
[
0
,
2
π
]
∪
(
π
,
2
3
π
)
then
cot
x
≥
0
⇒
cot
x
=
cot
x
+
s
i
n
x
1
⇒
s
i
n
x
1
=
0
⇒
No solution exist
(ii) When
x
∈
(
2
π
,
π
)
∪
(
2
3
π
,
2
π
)
then
cot
x
<
0
∴
−
cot
x
=
cot
x
+
s
i
n
x
1
⇒
−
2
cot
x
=
s
i
n
x
1
⇒
cos
x
=
2
−
1
⇒
x
=
3
2
π