[sinx+cosx]=3+[−sinx]+[−cosx]=1
The maximum value of the L.H.S. is 1 and the minimum of the R.H.S. is also 1. Thus, [sinx+cosx]=3+[−sinx]+[−cosx]=1
or [sinx+cosx]=1,[−sinx]=−1,[−cosx]=−1 [sinx+cosx]=1 ∴1≤sinx+cosx≤2 ∴x∈[0,2π]...(i) ∴[−sinx]=−1 ∴−1≤−sinx<0 ∴0<cosx≤1 ∴x∈(0,2π] .... (ii) ∴[−cosx]=−1 ∴−1≤−cosx<0 ∴0<cosx≤1 ∴x∈(0,2π] ....(iii)
From Eqs. (i), (ii), (iii), x∈(0,2π)