Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of real solutions of the equation e4 x+4 e3 x-58 e2 x+4 ex+1=0 is
Q. The number of real solutions of the equation
e
4
x
+
4
e
3
x
−
58
e
2
x
+
4
e
x
+
1
=
0
is _____
758
156
JEE Main
JEE Main 2022
Complex Numbers and Quadratic Equations
Report Error
Answer:
2
Solution:
e
4
x
+
4
e
3
x
−
58
e
2
x
+
4
e
x
+
1
=
0
Let
f
(
x
)
=
e
2
x
(
e
2
x
+
e
2
x
1
+
4
(
e
x
+
e
x
1
)
−
58
)
e
x
+
e
x
1
Let
h
(
t
)
=
t
2
+
4
t
−
58
=
0
t
=
2
−
4
±
16
+
4.58
2
−
4
±
2
62
t
1
=
−
2
+
2
62
t
2
=
−
2
−
2
62
(not possible)
t
≥
2
e
x
+
e
x
1
=
−
2
+
2
62
e
2
x
−
(
−
2
+
2
62
)
e
x
+
1
=
0
(
−
2
+
2
62
)
−
4
4
+
4.62
−
8
62
−
4
248
−
8
62
>
0
2
a
−
b
>
0
both roots are positive
2
real roots