Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of real roots of the equation, e4x + e3x - 4e2x + ex +1 = 0 is :
Q. The number of real roots of the equation,
e
4
x
+
e
3
x
−
4
e
2
x
+
e
x
+
1
=
0
is :
5442
205
JEE Main
JEE Main 2020
Complex Numbers and Quadratic Equations
Report Error
A
3
18%
B
4
23%
C
1
35%
D
2
24%
Solution:
e
4
x
+
e
3
x
−
4
e
x
+
e
x
+
1
=
0
Divide by
e
2
x
⇒
e
2
x
+
e
x
−
4
+
e
x
1
+
e
2
x
1
=
0
⇒
(
e
2
x
+
e
2
x
1
)
+
(
e
x
+
e
x
1
)
−
4
=
0
⇒
(
e
x
+
e
x
1
)
2
−
2
+
(
e
x
+
e
x
1
)
−
4
=
0
Let
e
x
+
e
x
1
=
t
⇒
(
e
x
−
1
)
2
=
0
⇒
x
=
0.
∴
Number of real roots
=
1