From the given equation we have, 2sin2x+ycos2x−y=2sin2x+ycos2x+y ⇒sin2x+y[cos2x−y−cos2x+y]=0 ⇒sin2x+y×2sin2xsin2y=0
Which holds if either sin2x+y=0 or sin2x=0
Also since ∣x∣+∣y∣=1⇒∣x∣≤1,∣y∣≤1. So, the required solution is either x+y=0 or x=0 or y=0
If x=0,y=±1, and if y=0,x=±1 and if x+y=0 ⇒y=−x⇒∣y∣=∣−x∣=∣x∣=21
So that the required pairs (x,y) are (0,±1),(±1,0),(21,−21),(−21,21) which are 6 in number.