Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of integers x, y, z, w such that x+y+z+w=20 and x, y, z, w ≥-1, is
Q. The number of integers
x
,
y
,
z
,
w
such that
x
+
y
+
z
+
w
=
20
and
x
,
y
,
z
,
w
≥
−
1
, is
252
148
Permutations and Combinations
Report Error
A
24
C
3
B
25
C
3
C
26
C
3
D
27
C
3
Solution:
Put
x
=
a
−
1
,
y
=
b
−
1
,
z
=
c
−
1
,
w
=
d
−
1
, then
a
,
b
,
c
,
d
≥
0
and
(
a
−
1
)
+
(
b
−
1
)
+
(
c
−
1
)
+
(
d
−
1
)
=
20
⇒
a
+
b
+
c
+
d
=
24
The number of non-negative integral solutions of this equation is
24
+
4
−
1
C
4
−
1
=
27
C
3