Q.
The number of integer value(s) of k for which the expression x2−2(4k−1)x+15k2−2k−7>0 for every real number x is/are
1750
235
J & K CETJ & K CET 2015Complex Numbers and Quadratic Equations
Report Error
Solution:
Given, expression is x2−2(4k−1)+x+15k2−2k−7>0
Its discriminant, D=b2−4ac ={−2(4k−1)}2−4×1×(15k2−2k−7) =4(4k−1)2−4(15k2−2k−7) =4[(4k−1)2−(15k2−2k−7)] =4[16k2−8k+1−15k2+2k+7] =4[k2−6k+8] =4[k2−4k−2k+8∣=4∣(k−4)(k−2)] Now, for real values of x, D<0 ⇒(k−4)(k−2)<0 ⇒k<4 or k>2 ∴ Integer value of k is 3. Hence, number of integer value of k is noe.