Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of distinct terms in the expansion of (x3+1+(1/x3))n ; x ∈ R+ and n ∈ N is
Q. The number of distinct terms in the expansion of
(
x
3
+
1
+
x
3
1
)
n
;
x
∈
R
+
and
n
∈
N
is
2115
237
Binomial Theorem
Report Error
A
2
n
B
3
n
C
2
n
+
1
D
3
n
+
1
Solution:
(
x
3
+
1
+
x
3
1
)
n
=
[
1
+
(
x
3
+
x
3
1
)
]
n
=
n
C
0
+
n
C
1
(
x
3
+
x
3
1
)
+
…
+
n
C
n
(
x
3
+
x
3
1
)
n
All the terms are distinct with powers
(
x
3
)
0
,
(
x
3
)
,
(
x
3
)
2
,
…
(
x
3
)
n
,
(
x
3
)
−
n
,
…
(
x
3
)
−
1
. Hence,
(
2
n
+
1
)
terms.