Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of distinct real values of λ, for which the determinant |-λ2 1 1 1 -λ2 1 1 1 -λ2| vanishes, is
Q. The number of distinct real values of
λ
, for which the determinant
∣
∣
−
λ
2
1
1
1
−
λ
2
1
1
1
−
λ
2
∣
∣
vanishes, is
281
101
Determinants
Report Error
A
0
26%
B
1
45%
C
2
20%
D
3
9%
Solution:
R
1
→
R
1
+
R
2
+
R
3
(
2
−
λ
2
)
∣
∣
1
1
1
1
−
λ
2
1
1
1
−
λ
2
∣
∣
=
0
C
1
→
C
1
−
C
2
and
C
2
→
C
2
−
C
3
(
2
−
λ
2
)
∣
∣
0
1
+
λ
2
0
0
−
λ
2
−
1
1
+
λ
2
1
1
−
λ
2
∣
∣
=
0
⇒
(
2
−
λ
2
)
[
1
+
λ
2
]
2
=
0
∴
λ
2
=
2
⇒
λ
=
±
2
⇒
two values of
λ