Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of dissimilar terms in the expansion of (x + y)n is n + 1. Therefore number of dissimilar terms in the expansion of (x + y + z)12 is
Q. The number of dissimilar terms in the expansion of
(
x
+
y
)
n
is
n
+
1
. Therefore number of dissimilar terms in the expansion of
(
x
+
y
+
z
)
12
is
2753
165
Binomial Theorem
Report Error
A
13
25%
B
39
34%
C
78
20%
D
91
22%
Solution:
(
x
+
y
+
z
)
12
=
x
12
+
12
c
1
x
11
(
y
+
z
)
1
+
12
c
2
x
10
(
y
+
z
)
2
+
.....
+
12
c
12
(
y
+
z
)
12
∴
total no. of terms
=
1
+
2
+
3
+
4
+
.....
+
13
=
2
13
(
1
+
13
)
=
13
×
7
=
91