Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of continuous functions f: [0,1]→ R that satisfy ∫ limits01x f (x)dx-(1/3)+(1/4) ∫ limits01 (f(x))2 dx is
Q. The number of continuous functions
f
:
[
0
,
1
]
→
R
that satisfy
0
∫
1
x
f
(
x
)
d
x
−
3
1
+
4
1
0
∫
1
(
f
(
x
)
)
2
d
x
is
1711
208
KVPY
KVPY 2017
Report Error
A
0
B
1
C
2
D
infinity
Solution:
We have,
0
∫
1
x
f
(
x
)
d
x
=
3
1
+
4
1
0
∫
1
(
f
(
x
)
)
2
d
x
⇒
−
3
1
=
4
1
[
0
∫
1
[
(
f
(
x
)
)
2
−
4
x
f
(
x
)
]
d
x
⇒
−
3
1
=
4
1
[
0
∫
1
[
f
(
x
)
−
2
x
]
2
d
x
−
0
∫
1
4
x
2
d
x
]
⇒
−
3
4
=
0
∫
1
[
f
(
x
)
−
2
x
]
2
d
x
−
[
3
4
x
3
]
0
1
⇒
3
4
=
0
∫
1
[
(
x
)
−
2
x
]
2
d
x
−
3
4
0
∫
1
[
f
(
x
)
−
2
x
]
2
d
x
=
0
∴
Only one continuous function