Given, sin2nπ+cos2nπ=2n…(i)
Squaring both sides (sin2nπ+cos2nπ)2=4n sin22nπ+cos22nπ+2sin2nπcos2nπ=4n ⇒1+sinnπ=4n ⇒sinnπ=4n−1 ⇒sinnπ=4n−4
As, sinnπ>0,n>2
So, 4n−4>0 ⇒n>4…(ii)
Also, sin(2nπ)+cos2nπ=2sin(4π+2nπ).
From Eq. (i) 2sin(4π+2nπ)=2nsin(4π+2nπ)=22n
Since, sin(4π+2nπ)<1,∀n>2
We get, 22n<1 ⇒n<8…(iii)
From Eqs. (ii) and (iii) 4<n<8
So, n=5,6,7
Hence, number of integral value of n is 3