Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of 3-digit odd numbers, whose sum of digits is a multiple of 7, is .
Q. The number of
3
-digit odd numbers, whose sum of digits is a multiple of
7
, is ______.
1040
157
JEE Main
JEE Main 2022
Permutations and Combinations
Report Error
Answer:
63
Solution:
x
y
z
←
odd number
z
=
1
,
3
,
5
,
7
,
9
x
+
y
+
z
=
7
,
14
,
21
[sum of digit multiple of
7
]
1
to 9
x
+
0
to 9
y
=
6
,
4
,
2
,
13
,
11
,
9
,
7
,
5
,
20
,
18
,
16
,
14
,
12
x
+
y
=
6
⇒
(
1
,
5
)
,
(
2
,
4
)
,
(
3
,
3
)
,
(
4
,
2
)
,
(
5
,
1
)
,
(
6
,
0
)
→
T.N.
=
6
x
+
y
=
4
⇒
(
1
,
3
)
,
(
2
,
2
)
,
(
3
,
1
)
,
(
4
,
0
)
→
T
.
=
4
x
+
y
=
2
⇒
(
1
,
1
)
,
(
2
,
0
)
→
T.N.
=
2
x
+
y
=
13
⇒
(
4
,
9
)
,
(
5
,
8
)
,
(
6
,
7
)
,
(
7
,
6
)
,
(
8
,
5
)
,
(
9
,
4
)
→
T.N.
=
6
x
+
y
=
11
⇒
(
2
,
9
)
,
(
3
,
8
)
,
(
4
,
7
)
,
(
5
,
6
)
,
(
6
,
5
)
,
(
6
,
5
)
,
(
7
,
4
)
,
(
8
,
3
)
,
(
9
,
2
)
→
T.N.
=
8
x
+
y
=
9
⇒
(
1
,
8
)
,
(
2
,
7
)
,
(
3
,
8
)
,
(
4
,
5
)
,
(
5
,
4
)
,
…
.
(
8
,
1
)
,
(
9
,
0
)
→
T.N.
=
9
x
+
y
=
7
⇒
(
1
,
8
)
,
(
2
,
5
)
,
(
3
,
4
)
,
…
.
(
8
,
1
)
,
(
7
,
0
)
→
T.N.
=
7
x
+
y
=
5
⇒
(
1
,
4
)
,
(
2
,
3
)
,
(
3
,
2
)
,
(
4
,
1
)
,
(
5
,
0
)
→
T.N.
=
5
x
+
y
=
20
⇒
Not possible
x
+
y
=
18
⇒
(
9
,
9
)
→
T.N.
=
1
x
+
y
=
16
⇒
(
7
,
9
)
,
(
8
,
8
)
,
(
9
,
7
)
→
T.N.
=
3
x
+
y
=
14
⇒
(
5
,
9
)
,
(
6
,
8
)
,
(
7
,
7
)
,
(
8
,
6
)
,
(
9
,
5
)
→
T.N.
=
5
x
+
y
=
12
⇒
(
3
,
9
)
,
(
4
,
8
)
,
(
5
,
7
)
,
(
6
,
6
)
…
.
(
9
,
3
)
→
T.N.
=
7