Given curves are x=a(cosθ+θsinθ), y=a(sinθ−θcosθ).
On differentiating w.r.t. θ respectively, we get dθdx=a(−sinθ+sinθ+θcosθ) dθdy=a(cosθ−cosθ+θsinθ) ⇒dθdx=aθcosθ dθdy=aθsinθ ∴dxdy=cosθsinθ ∴ Equation of normal is y−asinθ+aθcosθ=−sinθcosθ (x−acosθ−aθsinθ) ⇒ysinθ−asin2θ+aθcosθsinθ =−xcosθ+acos2θ+aθsinθcosθ ⇒xcosθ+ysinθ=a
Which is always a constant distance ' a ' from the origin.