Let P(x,y) be any point on the curve y2=4x. S=(x−2)2+(y−1)2 ⇒S2=(x−2)2+(y−1)2=[4y2−2]2+(y−1)2=f(y) (say) ⇒f′(y)=2[4y2−2][42y]+2(y−1) =4(y2−8)y+8(y−1)=4y3−8y+8y−8=4y3−8 ⇒f′′(y)=43y2 f′(y)=0 ⇒4y3−8=0 ⇒y3−8=0 ⇒y=2 f′′(2)=43.22=3>0.
When y=2, the distance between the points is minimum. ∴y=2 ⇒x=1. ∴ Required point =(1,2).