Given acceleration, vd=A−Bv
(a) When t=0,v=0, therefore initial acceleration, (dtdv)t=0=A
(b) When acceleration is zero, then dtdv=0.
Hence, A−Bv=0
or v=A/B
(c) A−Bvdv=dt
Integrating it within the limits of motion, i.e., as time changes from 0 to t, velocity changes 0 to v, we have −[Bloge(A−Bv)]0v=[t]0t ⇒loge(A−Bv)−logeA=−Bt
or AA−Bv=e−Bt
or v=BA(1−e−Bt)