we know that A.M. ≥ G.M. ⇒4x4+y4+2z2+2z2≥4x4×y4×2z2×2z2 ⇒4x4+y4+2z2+2z2≥4x4×y4×4z4 ⇒4x4+y4+2z2+2z2≥xyz441 ⇒xyzx4+y4+22z2≥4441 ⇒xyzx4+y4+z2≥4444 ⇒xyzx4+y4+z2≥443 ⇒xyzx4+y4+z2≥426 ⇒xyzx4+y4+z2≥246 ⇒xyzx4+y4+z2≥223 ⇒xyzx4+y4+z2≥8 ⇒xyzx4+y4+z2≥22
therefore the minimum value of <br/>xyzx4+y4+z2 is 22