Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The minimum value of the function y=(a2/x)+(b2/a-x), a > 0, b > 0 in (0, a) is :
Q. The minimum value of the function
y
=
x
a
2
+
a
−
x
b
2
,
a
>
0
,
b
>
0
in
(
0
,
a
)
is :
3405
216
Application of Derivatives
Report Error
A
a
+
b
36%
B
a
+
b
1
18%
C
a
1
(
a
+
b
)
2
27%
D
a
2
1
(
a
+
b
)
18%
Solution:
Given,
y
=
x
a
2
+
a
−
x
b
2
⇒
d
x
d
y
=
−
x
2
a
2
+
(
a
−
x
)
2
b
2
=
0
⇒
x
=
a
±
b
a
2
,
out of which only one
x
=
a
+
b
a
2
is in
(
0
,
a
)
.
Also
d
x
2
d
2
y
=
x
3
2
a
2
+
(
a
−
x
)
3
2
b
2
>
0
in
(
0
,
a
)
∴
Minimum value attained is
a
+
b
+
ab
a
+
b
b
2
=
a
1
(
a
+
b
)
2