Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The minimum value of the function f (x)=x3/2+x-3/2-4(x+(1/x)) for all permissible real x, is
Q. The minimum value of the function
f
(
x
)
=
x
3/2
+
x
−
3/2
−
4
(
x
+
x
1
)
for all permissible real
x
, is
15181
205
Application of Derivatives
Report Error
A
−
10
46%
B
−
6
26%
C
−
7
23%
D
−
8
5%
Solution:
f
(
x
)
=
x
3/2
+
x
−
3/2
−
4
(
x
+
x
1
)
f
(
x
)
=
(
x
+
x
1
)
3
−
3
(
x
+
x
1
)
−
4
[
(
x
+
x
1
)
2
−
2
]
Let
x
+
x
1
=
t
(
x
>
0
)
Let
g
(
t
)
=
t
3
−
3
t
−
4
t
2
+
8
g
(
t
)
=
t
3
−
4
t
2
−
3
t
+
8
g
′
(
t
)
=
3
t
2
−
8
t
−
3
=
(
t
−
3
)
(
3
t
+
1
)
g
′
(
t
)
=
0
⇒
t
=
3
(
t
=
−
1/3
)
g
′′
(
t
)
=
6
t
−
8
g
′′
(
3
)
=
10
>
0
⇒
g
(
3
)
is minimum
g
(
3
)
=
27
−
9
−
36
+
8
=
−
10