Given, f(x)=sinx+cosx1​
On differentiating w.r.t. x, we get f′(x)=(sinx+cosx)2−1​[cosx−sinx]
For minimum, put f′(x)=0 ∴cosx−sinx=0 ⇒tanx=1 ⇒x=4π​ ∴x=4π​,f′(x)>0, minima ∴ Minimum value is f(4π​)=sin4π​+cos4π​1​=2​1​+2​1​1​ =2/2​1​=22​​