Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The minimum value of n for which (22+42+62+ ldots+(2n)2/12+32+52+ ldots+(2n-1)2)< 1.01 is
Q. The minimum value of
n
for which
1
2
+
3
2
+
5
2
+
…
+
(
2
n
−
1
)
2
2
2
+
4
2
+
6
2
+
…
+
(
2
n
)
2
<
1.01
is
1508
208
KVPY
KVPY 2011
Report Error
A
101
B
121
C
151
D
does not exist
Solution:
We have,
1
2
+
3
2
+
5
2
+
…
+
(
2
n
−
1
)
2
2
2
+
4
2
+
6
2
+
…
+
(
2
n
)
2
<
1.01
=
Σ
(
4
n
2
−
4
n
+
1
)
Σ4
n
2
<
1.01
=
4
6
n
(
n
+
1
)
(
2
n
+
1
)
−
4
2
n
(
n
)
(
n
+
1
)
+
n
4
6
n
(
n
+
1
)
(
2
n
+
1
)
<
1.01
=
3
n
(
2
n
+
1
)
(
2
n
−
1
)
4
6
n
(
n
+
1
)
(
2
n
+
1
)
<
101
=
2
n
−
1
2
(
n
+
1
)
<
100
101
=
200
n
+
200
<
202
n
−
101
⇒
2
n
>
301
⇒
n
>
2
301
=
150.5
∴
n
>
151