2(x2−3)3+27 is minimum when (x2−3)3+27 is minimum Let y=(x2−3)3+27 =x6−27−9x4+27x2+27 ⇒y=x6−9x4+27x2 ⇒y=x2(x4−9x2+27) ⇒y=x2[x4−9x2+481−481+27] ⇒y=x2[(x4−9x2+481)+427] ⇒y=x2[(x2−29)2+227]≥0∀x ∴ Minimum value of (x2−3)3+27 is 0.
Hence, minimum value of 2(x2−3)3+27 =20=1