Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The minimum radius vector of the curve (a2/x2)+(b2/y2)=1 is of length
Q. The minimum radius vector of the curve
x
2
a
2
+
y
2
b
2
=
1
is of length
2107
220
Manipal
Manipal 2014
Report Error
A
a - b
B
a + b
C
2 a+ b
D
None of these
Solution:
Given curve is
x
2
a
2
+
y
2
b
2
=
1
Let radius vector is '
r
'
∴
r
2
=
x
2
+
y
2
⇒
r
2
=
y
2
−
b
2
a
2
y
2
+
y
2
(
∵
x
2
a
2
+
y
2
b
2
=
1
)
For minumum value of
r
,
d
y
d
(
r
2
)
=
0
⇒
(
y
2
−
b
2
)
2
−
2
y
b
2
a
2
+
2
y
=
0
⇒
y
2
=
b
(
a
+
b
)
∴
x
2
=
a
(
a
+
b
)
⇒
r
2
=
(
a
+
b
)
2
⇒
r
=
a
+
b