Equation of circle is x2+y2−6x+4y−12=0 ∴2x+2yy′−6+4y′&=0 ⇒y′=2y+46−2x ∴ Slope of tangent at (−1,1)=dxdv∣∣(−1,1)=2(1)+46−2(−1)=68=34 ∴ Equation of tangent is y−1=34(x+1) ⇒3y−3=4x+4 ⇒4x−3y+7=0
Let the equation of chord is 4x−3y+k=0 ∴16+9k−7=±1 ⇒k−7=±5 ⇒k=7±5⇒k=12,2 ∴ Equation of chord can be 4x−3y+12=0 or 4x−3y+2=0
Now, Distance of both above lines from centre of circle are d1=∣∣512+6+12∣∣=6
and d2=∣∣512+6+2∣∣=4
and radius of circle, r=9+4+12=5 ∴d2 Equation of chord is 4x−3y+2=0
Now, slope of line 4x−3y+2=0 is 34 ∴ Slope of line CP=4−3 ∴ Equation of CP is y+2=4−3(x−3) ⇒4y+8=−3x+9 ⇒3x+4y=1
On solving 4x−3y+2=0 and 3x+4y=1,
we get P(−51,52) ∴ Mid-point of chord is (−51,52)