Q.
The mean square deviation of a set of n observation x1,x2,...xn about a point c is defined as n1i=1∑n(xi−c)2.The mean square deviations about −2 and 2 are 18 and 10 respectively, the standard deviation of this set of observations is
We have n1i=1∑n(xi+2)2=18 and n1i=1∑n(xi−2)2=10 ⇒i=1∑n(xi+2)2=18n and i=1∑n(xi−2)2=10n ⇒i=1∑n(xi+2)2+i=1∑n(xi−2)2=28n
and i=1∑n(xi+2)2−i=1∑n(xi−2)2=8n ⇒2i=1∑n(xi+4)2=28n2i=1∑n4xi=8n ⇒i=1∑nxi2+4n=14ni=1∑nxi=n ⇒i=1∑nxi2=10ni=1∑nxi=n ∴σ=n1i=1∑nxi2−(n1i=1∑nxi)2 =n10n−(nn)2=3