Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The maximum value of the function f(x) = 3x8 - 18x2 + 27x - 40 on the set S = x ∫ R: x2 + 30 le 11 x is :
Q. The maximum value of the function
f
(
x
)
=
3
x
8
−
18
x
2
+
27
x
−
40
on the set
S
=
{
x
∫
R
:
x
2
+
30
≤
11
x
}
is :
2146
180
JEE Main
JEE Main 2019
Application of Derivatives
Report Error
A
122
80%
B
-222
5%
C
-122
10%
D
222
5%
Solution:
S
=
{
x
∈
R
,
x
2
+
30
−
11
x
≤
0
}
=
{
x
∈
R
,
5
≤
x
≤
6
}
Now
f
(
x
)
=
3
x
3
−
18
x
2
+
27
x
−
40
⇒
f
′
(
x
)
=
9
(
x
−
1
)
(
x
−
3
)
,
which is positive in
[
5
,
6
]
⇒
f
(
x
)
increasing in
[
5
,
6
]
Hence maximum value =
f
(
6
)
=
122