Given, f(x)=2sinx+cos2x
On differentiating w.r.t. x, we get f′(x)=2cosx−2sin2x
Put f′(x)=0, 2cosx−4sinxcosx=0 ⇒2cosx(1−2sinx)=0 ⇒cosx=0,sinx=21 ⇒x=2π,x=6π
Now, f′′(x)=−2sinx−4cos2x
At x=2π, f′′(2π)=−2sin(2π)−4cos2(2π) =2>0, Minima At x=6π, f′′(6π)=−2sin(6π)−−4cos2(6π) =−1−2=−3, Maxima.