Δ=∣∣111+cosθ11+sinθ1111∣∣
Applying R1→R1−R3andR2→R2−R3, we get Δ=∣∣−cosθ−cosθ1+cosθ0sinθ1001∣∣
Expanding along C3, we get Δ=1(−cosθsinθ−0)=−cosθsinθ=2−1sin2θ
We know, −1≤sin2θ≤1 ⇒−21≤21sin2θ≤21⇒21≥−21sin2θ≥2−1
i.e., −21≤−21sin2θ≤21⇒2−1≤Δ≤21
Hence, maximum value of Δ is 21.