Let the distance from origin be =p =x2+y2
Now p2=x2+y2 =a2sin2t+b2sin2(b at )−2absint⋅sin(b at )+a2cos2t+b2cos2(b at )−2abcost⋅cos(b at )<br/>=a2+b2−2ab[sint⋅sin(b at )+cost⋅cos(b at )]<br/>=a2+b2−2ab[cos(t−bat)]
Now dtdp2 <br/>=−2absin(t−bat)(1−ba)<br/> <br/>=0<br/>
Or <br/>sin(t−b at )=0<br/>
Hence <br/>cos(t−bat)=1<br/>
Substituting in the expression of p2 we get p2=a2+b2−2ab =(a−b)2
Hence pmax=(a−b)2 =a−b