Let f(θ)=sin6θ+cos6θ ⇒f(θ)=(sin2θ)3+(cos2θ)3 =(sin2θ+cos2θ) (sin4θ+cos4θ−sin2θ⋅cos2θ) [∵a3+b3=(a+b)(a2+b2−ab)] =1⋅{(sin2θ+cos2θ)2−3sin2θ⋅cos2θ} =1⋅(1−43⋅4sin2θ⋅cos2θ) =1−43(sin2θ)2(∵sin2A=2sinAcosA) =1−83(1−cos4θ) =1−83+83cos4θ f(θ)=85+83⋅cos4θ ∵−1≤cos4θ≤1 ⇒8−3≤83cos4θ≤83 ⇒85−83≤85+83cos4θ≤85+83 ⇒41≤f(θ)≤1
[from Eq.
So, the maximum value is 1 and minimum value is 41