Let P=(1+101001)10100
Let x=10100 ⇒P=(1+x1)x ⇒P=1+(x)(x1)+2!(x)(x−1)⋅x21+3!(x)(x−1)(x−2)⋅x31+……… (upto 10100+1 terms ) ⇒P=1+1+(2!1−2!x21)+(3!1−……)+ so on ⇒P=2+( Positive value less then 2!1+3!1+4!1+….)
Also e =1+1!1+2!1+3!1+4!1+…… ⇒2!1+3!1+4!1+….=e−2 ⇒P=2+( positive value less then e−2) ⇒P∈(2,3) ⇒ least integer value of P is 3