We have, arg(z+1z−1)=k,(k=0)
Put z=x+iy, we get arg(x+1+iyx−1+iy)=k ⇒arg[(x+1+iy)(x+1−iy)(x−1+iy)(x+1−iy)]=k ⇒arg[(x+1)2+y2(x2−1)+iy(2)+y2]=k ⇒arg[(x+1)2+y2x2+y2−1+2iy]=k ⇒arg[(x+1)2+y2x2+y2−1+2iy]=k ⇒x2+y2−12y=k [∵arg(z)=tan−1xy] ⇒(x2+y2)k−k−2y=0 ⇒kx2+ky2−2y−k=0 ⇒x2+y2−k2y−1=0
Which represent a circle of centre (0,k1) i.e. on y-axis.