Equation of any tangent to the given ellipse is y=mx±a2m2+b2 y−mx=±a2m2+b2...(1)
Equation of perpendicular line is my+x=λ
It passes through the centre (0,0) ∴λ=0 my+x=0...(2)
On squaring and adding (1) and (2), we get y2+m2x2+m2y2+x2=a2m2+b2 (1+m2)(x2+y2)=a2m2+b2 ⇒(1+y2x2)(x2+y2)=y2a2x2+b2 [from(2)] ⇒(x2+y2)2=a2x2+b2y2
But (x2+y2)2=lx2+my2 l=a2,m=b2