Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The locus of middle point of chords of hyperbola 3x2 - 2y2 + 4x - 6y = 0 parallel to y = 2x is
Q. The locus of middle point of chords of hyperbola
3
x
2
−
2
y
2
+
4
x
−
6
y
=
0
parallel to
y
=
2
x
is
3414
186
WBJEE
WBJEE 2007
Report Error
A
3
x
−
4
y
=
4
B
3
y
−
4
x
+
4
=
0
C
4
x
−
3
y
=
3
D
3
x
−
4
y
=
2
Solution:
Let
(
h
,
k
)
be mid-point of chord.
Then, its equation is
T
=
S
1
∴
3
h
x
−
2
k
y
+
2
(
x
+
h
)
−
3
(
y
+
k
)
=
3
h
2
−
2
k
2
+
4
h
−
6
k
⇒
x
(
3
h
+
2
)
+
y
(
−
2
k
−
3
)
=
3
h
2
−
2
k
2
+
2
h
−
3
k
Since, this line is parallel to
y
=
2
x
∴
2
k
+
3
3
h
+
2
=
2
⇒
3
h
+
2
=
4
k
+
6
⇒
3
h
−
4
k
=
4
Thus, locus of point is
3
k
−
4
y
=
4