Differentiating y3−x2y+5y−2x=0 w.r.t. x, we get 3y2y′−2xy−x2y′+5y′−2=0
or y′=3y2−x2+52xy+2 or y(0,0)′=52
Differentiating x4−x3y2+5x+2y=0 w.r.t. x, we get 4x3−3x2y2−2x3yy′+5+2y′=0
or y′=2−2x3y3x2y2−4x3−5 or y(0,0)′=−25.
Thus, both the curves intersect at right angle.