Let (x1,y1) be the pole of 2x+3y+4=0 w.r.t a2x2−b2y2=1
Its polar is a2xx1−b2yy1=1
Also polar is 2x+3y+4=0 ∴2a2x1=−3b2y1=−41 x1=−2a2,y1=−43b2
This lies on 3x−2y+5=0 if 2−3a2−46b2+5=0[∵ lines are conjugate] ⇒−6a2−6b2+20=0 ⇒6(a2+b2)=20 ⇒a2+b2=310